Sign In

Communications of the ACM


Uncloneable Cryptography

juice drips from a slice of lemon

Credit: Andrij Borys Associates, Fabio Cammarota

Intractable computational problems are a barrier for algorithm designers. Cryptographers are modern lemonade makers. Their lemons are these intractable problems, which they squeeze into sweet lemonade: secure cryptographic protocols. Why is a lemon even required? Because it lets us assume there is something an adversary cannot do. Intractable problems can give the honest user an advantage: for example, the honest user can multiply two large primes. The honest user knows the prime factors of the resulting number; yet, it is widely believed that a classical adversary cannot (efficiently) find these factors.

Cryptographers have been squeezing this computational intractability lemon since the 1970s. Are there any other lemons on which cryptography could be based? Quantum mechanics has quite a few peculiarities. One notable example is the no-cloning theorem, which states that quantum information cannot be cloned. Uncloneable cryptography—the main focus of this review—uses the no-cloning lemon as its main ingredient. For a broader perspective, see Figure 1 on page 80.


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account