By Abhishek Bhattacharjee
Communications of the ACM,
June 2021,
Vol. 64 No. 6, Page 98
10.1145/3460221
Comments
Moore's Law and Dennard scaling are waning. Yet the demand for computer systems with ever-increasing computational capabilities and power/energy-efficiency continues unabated, fueled by advances in big data and machine learning. The future of fields as disparate as data analytics, robotics, vision, natural language processing, and more, rests on the continued scaling of system performance per watt, even as traditional CMOS scaling ends.
The following paper proposes a surprising, novel, and creative approach to post-Moore's Law computing by rethinking the digital/analog boundary. The central idea is to revisit the idea of data representation and show how it is a critical design choice that cuts across hardware and software layers.
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.