Sign In

Communications of the ACM

Review articles

Elements of the Theory of Dynamic Networks


View as: Print Mobile App ACM Digital Library In the Digital Edition Share: Send by email Share on reddit Share on StumbleUpon Share on Hacker News Share on Tweeter Share on Facebook
Elements of the Theory of Dynamic Networks, illustrative photo

Credit: Anitha Devi Murthi

A dynamic network is a network that changes with time. Nature, society, and the modern communications landscape abound with examples. Molecular interactions, chemical reactions, social relationships and interactions in human and animal populations, transportation networks, mobile wireless devices, and robot collectives form only a small subset of the systems whose dynamics can be naturally modeled and analyzed by some sort of dynamic network. Though many of these systems have always existed, it was not until recently the need for a formal treatment that would consider time as an integral part of the network has been identified. Computer science is leading this major shift, mainly driven by the advent of low-cost wireless communication devices and the development of efficient wireless communication protocols.

Back to Top

Key Insights

ins01.gif

The early years of computing could be characterized as the era of staticity and of the relatively predictable; centralized algorithms for (combinatorial optimization) problems concerning static instances, as is that of finding a minimum cost traveling salesman tour in a complete weighted graph, computability questions in cellular automata, and protocols for distributed tasks in a static network. Even when changes were considered, as is the case in fault-tolerant distributed computing, the dynamics were usually sufficiently slow to be handled by conservative approaches, in principle too weak to be useful for highly dynamic systems. An exception is the area of online algorithms, where the input is not known in advance and is instead revealed to the algorithm during its course. Though the original motivation and context of online algorithms is not related to dynamic networks, the existing techniques and body of knowledge of the former may prove very useful in tackling the high unpredictability inherent in the latter.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account