Sign In

Communications of the ACM

Review articles

RandNLA: Randomized Numerical Linear Algebra


RandNLA: Randomized Numerical Linear Algebra, illustration

Matrices are ubiquitous in computer science, statistics, and applied mathematics. An m × n matrix can encode information about m objects (each described by n features), or the behavior of a discretized differential operator on a finite element mesh; an n × n positive-definite matrix can encode the correlations between all pairs of n objects, or the edge-connectivity between all pairs of nodes in a social network; and so on. Motivated largely by technological developments that generate extremely large scientific and Internet datasets, recent years have witnessed exciting developments in the theory and practice of matrix algorithms. Particularly remarkable is the use of randomization—typically assumed to be a property of the input data due to, for example, noise in the data generation mechanisms—as an algorithmic or computational resource for the development of improved algorithms for fundamental matrix problems such as matrix multiplication, least-squares (LS) approximation, low-rank matrix approximation, and Laplacian-based linear equation solvers.

Back to Top

Key Insights

ins01.gif

Randomized Numerical Linear Algebra (RandNLA) is an interdisciplinary research area that exploits randomization as a computational resource to develop improved algorithms for large-scale linear algebra problems.32 From a foundational perspective, RandNLA has its roots in theoretical computer science (TCS), with deep connections to mathematics (convex analysis, probability theory, metric embedding theory) and applied mathematics (scientific computing, signal processing, numerical linear algebra). From an applied perspective, RandNLA is a vital new tool for machine learning, statistics, and data analysis. Well-engineered implementations have already outperformed highly optimized software libraries for ubiquitous problems such as least-squares,4,35 with good scalability in parallel and distributed environments.52 Moreover, RandNLA promises a sound algorithmic and statistical foundation for modern large-scale data analysis.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account
ACM Resources