Sign In

Communications of the ACM

Research highlights

Cache Efficient Functional Algorithms


View as: Print Mobile App ACM Digital Library In the Digital Edition Share: Send by email Share on reddit Share on StumbleUpon Share on Hacker News Share on Tweeter Share on Facebook
Cache Efficient Functional Algorithms, illustration

Credit: Dog Milk

The widely studied I/O and ideal-cache models were developed to account for the large difference in costs to access memory at different levels of the memory hierarchy. Both models are based on a two level memory hierarchy with a fixed size fast memory (cache) of size M, and an unbounded slow memory organized in blocks of size B. The cost measure is based purely on the number of block transfers between the primary and secondary memory. All other operations are free. Many algorithms have been analyzed in these models and indeed these models predict the relative performance of algorithms much more accurately than the standard Random Access Machine (RAM) model. The models, however, require specifying algorithms at a very low level, requiring the user to carefully lay out their data in arrays in memory and manage their own memory allocation.

We present a cost model for analyzing the memory efficiency of algorithms expressed in a simple functional language. We show how some algorithms written in standard forms using just lists and trees (no arrays) and requiring no explicit memory layout or memory management are efficient in the model. We then describe an implementation of the language and show provable bounds for mapping the cost in our model to the cost in the ideal-cache model. These bounds imply that purely functional programs based on lists and trees with no special attention to any details of memory layout can be asymptotically as efficient as the carefully designed imperative I/O efficient algorithms. For example we describe an cacm5807_j.gif cost sorting algorithm, which is optimal in the ideal cache and I/O models.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.