acm-header
Sign In

Communications of the ACM

Research highlights

Geometric Tools For Exploring Manifolds of Light Transport Paths


points of light

Credit: iStockPhoto.com

Photorealistic images created using physical simulations of light have become a ubiquitous element of our everyday lives. The most successful techniques for producing such images replicate the key physical phenomena in a detailed software simulation, including the emission of light by sources, transport through space, and scattering in the atmosphere and at the surfaces of objects. Mathematically, this computation involves the approximation of many high-dimensional integrals, one for each pixel of the image, usually using Monte Carlo methods. Although a great deal of progress has been made on rendering algorithms, so that physically based rendering is now routinely used in many applications, commonly occurring situations can still cause these algorithms to become impractically slow, forcing users to make unrealistic scene modifications to obtain satisfactory results.

Light transport is complex because light can flow along a great variety of different paths through a scene, though only a subset of these makes relevant contributes to the final image. The simulation becomes ineffective when it is difficult to find the important paths. Commonly occurring materials like smooth metal or glass surfaces can easily lead to such situations, where only very few lighting paths participate, leading to spiky integrands and poor convergence. How to efficiently handle such cases in general has been a long-standing problem.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account