acm-header
Sign In

Communications of the ACM

Research highlights

Bounded Biharmonic Weights For Real-Time Deformation


bounded biharmonic weights, illustration

Our deformation method supports arbitrary combinations of control handles, such as points, bones, or cages. Throughout the paper, colored frames illustrate linear transformations specified at point handles.

Credit: www.alecjacobson.com

Changing an object's shape is a basic operation in computer graphics, necessary for transforming raster images, vector graphics, geometric models, and animated characters. The fastest approaches for such object deformation involve linearly blending a small number of given affine transformations, typically each associated with bones of an internal skeleton, vertices of an enclosing cage, or a collection of loose point handles. Unfortunately, linear blending schemes are not always easy to use because they may require manually painting influence weights or modeling closed polyhedral cages around the input object. Our goal is to make the design and control of deformations simpler by allowing the user to work freely with the most convenient combination of handle types. We develop linear blending weights that produce smooth and intuitive deformations for points, bones, and cages of arbitrary topology. Our weights, called bounded biharmonic weights, minimize the Laplacian energy subject to bound constraints. Doing so spreads the influences of the handles in a shape-aware and localized manner, even for objects with complex and concave boundaries. The variational weight optimization also makes it possible to customize the weights so that they preserve the shape of specified essential object features. We demonstrate successful use of our blending weights for real-time deformation of 2D and 3D shapes.

Back to Top

1. Introduction

Interactive deformation is the task of assisting the user to alter an object's shape. In the case of 2D cartoon deformation, we could ask the user to manually reposition each pixel of the image, but this is unnecessarily tedious. The space of coherent configurations of the 2D shape is much smaller than the space of all possible positions for every pixel of the image. Hence, we would rather the user provide only a few, high-level constraints like "open the mouth," "enlarge the belly," or "bend the tail" (Figure 1). The rest of the shape should immediately deform in an intuitive manner. We may interface such high-level constraints to the user with handle structures, like skeletons composed of rigid bones, enclosing cages, and selected regions or points.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account