Research and Advances
Artificial Intelligence and Machine Learning

Efficient table-free sampling methods for the exponential, Cauchy, and normal distributions

Posted

Three algorithms for sampling from exponential, Cauchy and normal distributions are developed. They are based on the "exact approximation" method, and their expected numbers of consumed uniform deviates are less than 1.04 per sample from the target distributions. The algorithms are simple and easily implemented in any desired precision. They require no space for long tables of auxiliary vectors, merely a few constants are needed. Nevertheless, their speed compares well with the performance of much more complex and table-aided sampling procedures.

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More