Sign In

Communications of the ACM

Communications of the ACM

Perturbations of eigenvalues of non-normal matrices

The problem considered is to give bounds for finite perturbations of simple and multiple eigenvalues &lgr;i of nonnormal matrices, where these bounds are in terms of the eigenvalues {&lgr;i}, the departure from normality &sgr;, and the Frobenius norm ‖ &Dgr;AF of the perturbation matrix, but not in terms of the eigensystem. The bounds which are derived are shown to be almost attainable for any set of all matrices of given {&lgr;i} and &sgr;. One conclusion is that, very roughly speaking, a simple eigenvalue &lgr;1 is perturbed by |&Dgr;&lgr;1| ≲ ‖ &Dgr;AF · ∏ (&sgr;/&thgr;j) where &thgr;j is of the order of magnitude of |&lgr;1 - &lgr;j|, the product being extended over all j where &thgr;j&sgr;.

The full text of this article is premium content


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.