Sign In

Communications of the ACM

Communications of the ACM

Reduction of a band-symmetric generalized eigenvalue problem


View as: Print Mobile App ACM Digital Library Full Text (PDF) Share: Send by email Share on reddit Share on StumbleUpon Share on Hacker News Share on Tweeter Share on Facebook
An algorithm is described for reducing the generalized eigenvalue problem Ax = &lgr;Bx to an ordinary problem, in case A and B are symmetric band matrices with B positive definite. If n is the order of the matrix and m the bandwidth, the matrices A and B are partitioned into m-by-m blocks; and the algorithm is described in terms of these blocks. The algorithm reduces the generalized problem to an ordinary eigenvalue problem for a symmetric band matrix C whose bandwidth is the same as A and B. The algorithm is similar to those of Rutishauser and Schwartz for the reduction of symmetric matrices to band form. The calculation of C requires order n2m operation. The round-off error in the calculation of C is of the same order as the sum of the errors at each of the n/m steps of the algorithm, the latter errors being largely determined by the condition of B with respect to inversion.

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account
ACM Resources