Research and Advances

Construction of rational and negative powers of a formal series

Posted

Some methods are described for the generation of fractional and negative powers of any formal series, such as Poisson series or Chebyshev series. It is shown that, with the use of the three elementary operations of addition, subtraction, and multiplication, all rational (positive and negative) powers of a series can be constructed. There are basically two approaches: the binomial theorem and the iteration methods. Both methods are described here, and the relationship between them is pointed out. Some well-known classical formulas are obtained as particular cases, and it is shown how the convergence properties of these formulas can be improved with very little additional computations. Finally, at the end of the article, some numerical experiments are described with Chebyshev series and with Fourier series.

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More