Sign In

Communications of the ACM

Communications of the ACM

An algorithm for finding a fundamental set of cycles of a graph


View as: Print Mobile App ACM Digital Library Full Text (PDF) Share: Send by email Share on reddit Share on StumbleUpon Share on Hacker News Share on Tweeter Share on Facebook
A fast method is presented for finding a fundamental set of cycles for an undirected finite graph. A spanning tree is grown and the vertices examined in turn, unexamined vertices being stored in a pushdown list to await examination. One stage in the process is to take the top element v of the pushdown list and examine it, i.e. inspect all those edges (v, z) of the graph for which z has not yet been examined. If z is already in the tree, a fundamental cycle is added; if not, the edge (v, z) is placed in the tree. There is exactly one such stage for each of the n vertices of the graph. For large n, the store required increases as n2 and the time as n&ggr; where &ggr; depends on the type of graph involved. &ggr; is bounded below by 2 and above by 3, and it is shown that both bounds are attained. In terms of storage our algorithm is similar to that of Gotlieb and Corneil and superior to that of Welch; in terms of speed it is similar to that of Welch and superior to that of Gotlieb and Corneil. Tests show our algorithm to be remarkably efficient (&ggr; = 2) on random graphs.

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account
ACM Resources