acm-header
Sign In

Communications of the ACM


151 - 160 of 233 for bentley


Data clustering: a review

Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

1999-09-01
https://dl.acm.org/ft_gateway.cfm?id=331504&dwn=1

An optimal algorithm for approximate nearest neighbor searching fixed dimensions

Consider a set of S of n data points in real d-dimensional space, Rd, where distances are measured using any Minkowski metric. In nearest neighbor searching, we preprocess S into a data structure, so that given any query point q∈ Rd, is the closest point of S to q can be reported quickly. Given any positive real ϵ, data point p is a (1 +ϵ)-approximate nearest neighbor of q if its distance from q is within a factor of (1 + ϵ) of the distance to the true nearest neighbor. We show that it is possible to preprocess a set of n points in Rd in O(dn log n) time and O(dn) space, so that given a query point q ∈ Rd, and ϵ > 0, a (1 + ϵ)-approximate nearest neighbor of q can be computed in O(cd, ϵ log n) time, where cd,ϵd ⌈1 + 6d/ϵ⌉d is a factor depending only on dimension and ϵ. In general, we show that given an integer k ≥ 1, (1 + ϵ)-approximations to the k nearest neighbors of q can be computed in additional O(kd log n) time.

1998-11-01
https://dl.acm.org/ft_gateway.cfm?id=293348&dwn=1

Arithmetic coding revisited

Over the last decade, arithmetic coding has emerged as an important compression tool. It is now the method of choice for adaptive coding on myltisymbol alphabets because of its speed, low storage requirements, and effectiveness of compression. This article describes a new implementation of arithmetic coding that incorporates several improvements over a widely used earlier version by Witten, Neal, and Cleary, which has become a de facto standard. These improvements include fewer multiplicative operations, greatly extended range of alphabet sizes and symbol probabilities, and the use of low-precision arithmetic, permitting implementation by fast shift/add operations. We also describe a modular structure that separates the coding, modeling, and probability estimation components of a compression system. To motivate the improved coder, we consider the needs of a word-based text compression program. We report a range of experimental results using this and other models. Complete source code is available.

1998-07-01
https://dl.acm.org/ft_gateway.cfm?id=290162&dwn=1