Sign In

Communications of the ACM

ACM Careers

Scientific Discovery In the Age of Artificial Intelligence

View as: Print Mobile App Share:
robot runs on a futuristic bridge, illustration

AI is accelerating scientific discovery and research.

Credit: Getty Images

Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment and accelerate research, helping scientists to generate hypotheses, design experiments, collect and interpret large datasets, and gain insights that might not have been possible using traditional scientific methods alone.

Here we examine breakthroughs over the past decade that include self-supervised learning, which allows models to be trained on vast amounts of unlabelled data, and geometric deep learning, which leverages knowledge about the structure of scientific data to enhance model accuracy and efficiency. We discuss how these methods can help scientists throughout the scientific process and the central issues that remain despite such advances.

Both developers and users of AI tools need a better understanding of when such approaches need improvement, and challenges posed by poor data quality and stewardship remain. These issues cut across scientific disciplines and require developing foundational algorithmic approaches that can contribute to scientific understanding or acquire it autonomously, making them critical areas of focus for AI innovation.

From Nature
View Full Article


No entries found

Sign In for Full Access
» Forgot Password? » Create an ACM Web Account